ATRIAL FIBRILLATION MANAGEMENT

2019 Executive Summary

Overview of Atrial Fibrillation Management and Treatment Outcomes
Atrial fibrillation (AF) is characterized by an irregular and often fast heartbeat that results in uncoordinated contraction of the top 2 chambers of the heart (ie, atria).\(^1\)

AF can be categorized into several types:\(^2^,\ ^3\)

- **First-diagnosed AF:** AF that has not been diagnosed before, regardless of how long it has been present for.
- **Paroxysmal AF:** Occasional AF that stops ≤7 days
- **Persistent AF:** Continuous AF that lasts longer than 7 days.
- **Early Persistent AF:** Continuous AF that lasts 7 days to 3 months.
- **Long-standing Persistent AF:** Continuous AF that lasts >12 months.
- **Permanent AF:** Represents a therapeutic attitude, where the presence of AF is accepted by the patient and physician, and no more attempts will be made to restore or maintain sinus rhythm.

Risk factors for AF include:

- **LIFESTYLE FACTORS**
 - Obesity\(^4^,\ ^7\), smoking\(^2\), alcohol consumption\(^2^,\ ^7^8\)

- **OTHER CONDITIONS**
 - High blood pressure\(^7\), Heart failure\(^9^,\ ^14\), History of heart attack\(^9^,\ ^15\), Coronary artery or other heart disease\(^5^,\ ^9\)

- **NON-MODIFIABLE FACTORS**
 - Older age\(^2^,\ ^16\), Family history or other genetic factors\(^9^,\ ^17^,\ ^18\), Male sex\(^2^,\ ^9^,\ ^16\)
Early detection and diagnosis of AF may help improve patient outcomes, since a long history and duration of AF have been associated with recurrence.19-22

\textbf{15\%-30\%}
OF PATIENTS EXPERIENCE
NO SYMPTOMS (i.e. silent AF)23

\begin{itemize}
\item 1 in 5 PATIENTS PROGRESS IN 1 YEAR24-27
\item PAROXYSMAL AF
\item PERSISTENT AF
\end{itemize}

Patients with AF have an increased risk for life-threatening complications and other diseases.28

\begin{itemize}
\item 5x Increase heart failure
\item 2.4x Increase stroke
\item 2x Increase cardiovascular mortality
\end{itemize}

\begin{itemize}
\item AF worsens quality of life for patients and caregivers.29-34
\item AF increasingly places a \textbf{critical financial burden} on the healthcare system, costing €660-€3,286 million annually across European countries.35-39
\end{itemize}
AF patient care pathway management includes:\(^2\)

MANAGEMENT of underlying cardiovascular risk factors and **REDUCING STROKE RISK**

- to improve life expectancy and quality of life

ELECTRICAL OR PHARMACEUTICAL CARDIOVERSION

- when a patient is experiencing an AF episode

RATE CONTROL THERAPIES

- to control heart rate

RHYTHM CONTROL THERAPIES

- including antiarrhythmic drugs and catheter ablation, to maintain normal sinus rhythm

- **Education and screening programs aimed at increasing awareness and diagnosis of AF are critical to reducing the risk of stroke and death** in patients with undiagnosed AF.\(^{40-41}\)
 - Ideally, patients will recognize AF symptoms and contact their clinicians when symptoms arise.\(^{42}\)

- **Early treatment of AF is important**, as it may improve patient life expectancy and quality of life.\(^2\)

Antiarrhythmic drug (AAD) therapy is moderately effective. It is commonly associated with treatment withdrawals, however, it has been shown to improve quality of life, and is affordable in the short term.

With drug therapy treatment:

- **33%-56%** of patients are in **NORMAL SINUS RHYTHM AT 1 YEAR**\(^{43}\)

- **12%-19%** of patients **WITHDRAW FROM TREATMENT DUE TO ADVERSE EVENTS**\(^{43}\)

- **UP to 18%** of patients **IMPROVE IN QUALITY OF LIFE**\(^{44}\)
With catheter ablation treatment:

- **94%** of patients are **FREE FROM ARRHYTHMIA RECURRENCE AT 1 YEAR**\(^{45-54}\)
- **1.8%** of patients experience **AN ABLATION-RELATED ADVERSE EVENT**\(^{55}\)

UP to 37% **IMPROVEMENT IN QUALITY OF LIFE**\(^{56}\)

Catheter ablation is more effective than drug therapy, has a low chance of AF-related complications, has significantly greater improvement in quality of life, and is less costly over the long term:

- Improvement in survival **FREE FROM ATRIAL ARRHYTHMIA** over 4 years after ablation\(^{55}\)
- **UP to 48%**

Similarly **LOW** **RATES OF AF-RELATED COMPLICATIONS**\(^{55, 57-58}\)

Patients with **paroxysmal AF** who undergo catheter ablation are **10 TIMES LESS LIKELY TO PROGRESS TO PERSISTENT AF** than those on AADs\(^{59}\)

(HR 0.11; 95% CI 0.025-0.483; p=0.0034.)
Guidance on the delivery of good care to patients with AF and on the use of catheter and surgical ablation to treat AF are available from the 2016 ESC/EACTS guidelines & 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation.

WHAT ARE THE RECOMMENDATIONS FOR MANAGING A PATIENT WITH AF?

The ESC/EACTS guidelines and the HRS/EHRA/ECAS/APHRS/SOLAECE consensus statement recommend an integrated approach to AF management that involves patients and multidisciplinary teams of healthcare professionals to improve access to care and patient compliance. The use of anticoagulants, cardioversion, rate control therapies, and rhythm control therapies are recommended to manage AF.

Integrated Management of AF & Collaborative Decision Making

Following the diagnosis of AF, guidelines recommend an integrated and structured approach to patient care and AF management that involves multidisciplinary teams of cardiologists and electrophysiologists, non-specialist healthcare professionals, and allied health professionals, and places patients in a central role in decision-making.

Key aims are to:

- Reduce mortality
- Tailor management to patient preferences
- Reduce hospitalizations
- Improve adherence to long-term therapy
- Improve adherence to guidelines
2. Oral Anticoagulation Therapy for Stroke Prevention in Patients with AF

- **CHA$_2$DS$_2$-VASc Score**
 - Man: 0 Woman: 1 **NO ANTICOAGULATION**
 - Man: 1 Woman: 2 **CONSIDER ANTICOAGULATION**
 - Man: ≥ 2 Woman: ≥ 3 **ANTICOAGULATION RECOMMENDED**

3. Rate Control Therapy to Lower and Control Heart Rate and Improve Symptoms of AF

- **LVEF <40% or Signs of Congestive HF**
 - **LOW DOSE β-BLOCKERS RECOMMENDED**
- **LVEF ≥40%**
 - **β-BLOCKERS OR NONDIHYDROPYRIDINE CALCIUM CHANNEL ANTAGONIST RECOMMENDED**

4. Acute Rhythm Control Therapy to Restore Normal Sinus Rhythm

- **No or minimal signs of heart disease**
- **Coronary artery disease, abnormal left ventricular hypertrophy**
- **Heart failure**
- **Hemodynamic Instability**
 - **PHARMACOLOGICAL OR ELECTRICAL CARDIOVERSION RECOMMENDED**
 - **ELECTRICAL CARDIOVERSION RECOMMENDED**
Guidelines recommend that treatment with AADs, catheter ablation, and/or surgical ablation be dependent on patient choice.2, 3

The choice of AADs needs to consider the presence of comorbidities, cardiovascular risk, potential for proarrhythmia, toxic effects, symptom burden, and patient preference.2
Selection of 2nd rhythm control therapy after failure of 1st rhythm control therapy

1. **Before AADs (Class I or III)**
 - **SURGICAL ABLATION RECOMMENDED**

2. **Refractory/ intolerant to ≥ 1 AADs (Class I or III)**
 - **SURGICAL ABLATION RECOMMENDED**

3. **Failed ≥ catheter ablation or refractory/ intolerant to ≥ AADs (Class I or III)**
 - **CONSIDER IN ALL AF TYPES**

Abbreviations:
- **AAD** = antiarrhythmic drug
- **AF** = atrial fibrillation
- **AVR** = aortic valve replacement
- **CABG** = coronary artery bypass graft
- **CHA2DS2-VASc** = Congestive Heart failure, Hypertension, Age ≥75 (doubled), Diabetes, Stroke (doubled), Vascular disease, Age 65–74, and Sex (female)
- **HF** = heart failure
- **LVEF** = left ventricular ejection fraction

Source: 2016 ESC Guidelines, and 2017 HRS/EHRA Consensus Statement
The goal of AF patient care pathway management includes detection and management of key complications and cardiovascular risk factors, including stroke and heart failure.

HOW IS THE PATIENT WITH AF TREATED?

AF patient care pathway management includes rhythm control therapy to restore sinus rhythm during an episode of AF and rate and rhythm control therapies over the long-term.2-3

The therapeutic goal of the initial management strategy for AF is to treat any underlying cardiovascular conditions and reduce the risk of stroke.2

THE PRESENCE OF CARDIOVASCULAR RISK FACTORS
often exacerbates AF2

AF IS ASSOCIATED WITH AN INCREASED RISK OF STROKE
compared to patients in sinus rhythm60

Current treatment options available for managing AF include:

RATE CONTROL THERAPIES

PHARMACOLOGICAL
Beta blockers or non-dihydropyridine calcium channel antagonists, digitalis glycosides, or amiodarone

SURGICAL
AV node ablation with pacemaker implantation
TREATMENT OF AF PATIENTS

ACUTE RHYTHM CONTROL THERAPIES

RHYTHM CONTROL THERAPIES FOR AN EPISODE OF AF
Electrical and pharmacological cardioversion

NON-EPISODIC RHYTHM CONTROL THERAPIES

PHARMACOLOGICAL

INTERVENTIONAL

SURGICAL

Over the long-term:

RATE CONTROL THERAPIES
are indicated to lower and control the heart rate in patients with AF

may also be sufficient TO CONTROL SYMPTOMS OF AF

of patients being in SINUS RHYTHM AT 1-YEAR FOLLOWUP 61

12%

RHYTHM CONTROL THERAPIES
that include AADs and catheter ablation are

the most common methods for CONTROLLING AF, effectively preventing recurrence in

as many as 94% of patients OVER 1-YEAR 2, 45-50
Antiarrhythmic drug therapy is an integral part of maintaining sinus rhythm after cardioversion; antiarrhythmic drugs act to suppress the firing of or depress the transmission of abnormal electrical signals.²

WHAT IS THE IMPACT OF ANTIARRHYTHMIC DRUG THERAPY IN MANAGING AF?

Antiarrhythmic drug therapy is fairly safe, cost effective and affordable in the short term but can be costly over the long term. Although moderately effective at maintaining normal sinus rhythm, it is effective at controlling symptoms of AF and improving patient quality of life.

Choice of AAD is primarily guided by safety considerations, including:²

- **ABSOLUTE** or **RELATIVE** CONTRAINDICATIONS
 - **RISK FACTORS** for adverse events such as onset of new arrhythmia or exacerbation of existing arrhythmia and effects outside the heart
 - **FACTORS** that influence **DRUG DISPOSITION** such as patient age and renal or hepatic function

PATIENT PREFERENCE

CLINICAL IMPACT

Antiarrhythmic drug therapy is fairly safe and moderately effective at maintaining normal sinus rhythm; its impact on consequences such as stroke, heart failure and mortality have been demonstrated in a limited number of studies.

AADs are moderately effective: 33%-56% rate for maintaining normal sinus rhythm at 1 year.⁴³

48% of patients with AF are not well managed on AADs.⁶²
PATIENT IMPACT
Antiarrhythmic drug therapy is effective at controlling symptoms of AF and significantly improves patient quality of life.

REDUCED SYMPTOMS WITH AADS44

<table>
<thead>
<tr>
<th>Symptom Frequency</th>
<th>Mean AF Symptom Frequency and Severity Checklist Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before AAD Initiation</td>
<td>25</td>
</tr>
<tr>
<td>1 Year After AAD Initiation</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptom Severity</th>
<th>Mean AF Symptom Frequency and Severity Checklist Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before AAD Initiation</td>
<td>35</td>
</tr>
<tr>
<td>1 Year After AAD Initiation</td>
<td>20</td>
</tr>
</tbody>
</table>

IMPROVED QUALITY OF LIFE WITH AADS44

<table>
<thead>
<tr>
<th>Physical Component</th>
<th>Mean SF-36 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before AAD Initiation</td>
<td>40</td>
</tr>
<tr>
<td>1 Year After AAD Initiation</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mental Component</th>
<th>Mean SF-36 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before AAD Initiation</td>
<td>35</td>
</tr>
<tr>
<td>1 Year After AAD Initiation</td>
<td>50</td>
</tr>
</tbody>
</table>

Abbreviations: AAD = antiarrhythmic drug; AF = atrial fibrillation; SF-36 = Short Form 36 questionnaire. Source: Jais et al. (2008)

ECONOMIC IMPACT
Antiarrhythmic drug therapy is cost effective and affordable in the short term, but can be costly over the long term.

Several studies show that AADs are cost effective, with key drivers including reduced adverse events, stroke, heart failure and mortality.63-65

Initial cost of AAD treatment is **LOW**

however

LENGTH of treatment is **INDEFINITE**

and the **cumulative cost** of AADs

INCREASES 28% ANNUALLY over 9 years*66

Cost of AAD therapy is influenced by its **toxicity level** and **effectiveness** in restoring sinus rhythm and reducing the risk of AF-related consequences.65, 67-72

*From one study performed in France; data were limited for other European countries.
Catheter ablation is used to create small scars on targeted parts of heart tissue that block the abnormal electrical signals causing the arrhythmia.²,³

WHAT IS THEIMPACT OF CATHETER ABLATION IN MANAGING AF?

Catheter ablation is highly effective at maintaining sinus rhythm, has a low rate of complications, reduces patient risk of AF-related complications, controls symptoms and significantly improves patient quality of life. It has been proven to be cost effective by reducing the need for unplanned medical visits and overall healthcare cost.

Key considerations for treating patients with catheter ablation include:³

- Type of AF
- Presence of structural heart disease and other comorbidities
- Risk of complications
- Patient preference
- Degree of symptoms
- Candidacy for alternative therapies (eg, rate control, AADs)
- Patient age and frailty

CLINICAL IMPACT

Catheter ablation is highly effective at maintaining sinus rhythm, is associated with a low rate of adverse events and reduced patient risk of AF-related complications, including stroke, dementia, heart failure, and mortality.

Catheter ablation is highly effective in eligible patients with AF, with recent studies reporting high rates of freedom from atrial arrhythmias at one year after a single procedure with advanced catheter ablation technology:

- **PAROXYSMAL AF**
 - 45-50: 84%-94%

- **PERSISTENT AF**
 - 45, 48, 51-54: 59%-83%
PATIENT IMPACT
Catheter ablation is highly effective at controlling symptoms of AF and significantly improves patient quality of life.

Reductions in symptom severity and improvements in quality of life after catheter ablation of AF are maintained over long-term follow-up.56

ECONOMIC IMPACT
Catheter ablation is cost effective: it reduces the need for unplanned medical visits, additional treatments to control AF, and subsequent treatment for long-term consequences of AF, in turn, reducing overall healthcare cost.

CATHETER ABLATION
reduces the need for unplanned ER visits and hospitalizations

by up to 80%

as compared to before ablation*73

*at 2 years based on evidence outside of Europe
Recent studies have examined the comparative clinical and cost effectiveness of catheter ablation and drug therapy, including rate and rhythm control drugs, over long-term follow-up.

WHAT IS THE IMPACT OF CATHETER ABLATION COMPARED TO DRUG THERAPY IN MANAGING AF?

Several studies have shown that catheter ablation is significantly more effective than AADs at preventing recurrence of atrial arrhythmias with a similar rate of complications.

CLINICAL IMPACT

Catheter ablation is more effective in preventing recurrence, complications, and progression of AF than drug therapy, with a similar rate of adverse events.

The **CABANA** trial found that **CATHETER ABLATION** was more **EFFECTIVE** at preventing recurrence of AF **UP to 48%** improvement in survival **FREE FROM ATRIAL ARRHYTHMIA** over 4 years compared to drug therapy.\(^{55}\)

CATHETER ABLATION was also associated with **up to 46% reductions** in the probability of **AF-RELATED complications**\(^{**}\) compared to drug therapy over 7-years follow-up.\(^{74}\)

* (hazard ratio [HR] 0.52; 95% confidence interval [CI] 0.45-0.60; p<0.001)

** 46% cardiac arrest, 41% stroke, 33% death, 17% cardiovascular hospitalization
The ATTEST randomized controlled trial found that patients receiving ablation, with paroxysmal AF are 10 TIMES LESS LIKELY TO PROGRESS TO PERSISTENT AF than those on AADs*.

The ATTEST randomized controlled trial found that patients receiving ablation, with paroxysmal AF are 10 TIMES LESS LIKELY TO PROGRESS TO PERSISTENT AF than those on AADs.*59

PATIENT IMPACT
Catheter ablation of AF results in a significantly greater improvement in patient quality of life than drug therapy.

The CAPTAF trial reported a significantly and clinically relevant greater improvement from baseline in patient-reported quality of life with catheter ablation than AADs at 1 year.58

The CABANA trial reported significantly GREATER IMPROVEMENT from baseline in quality of life WITH CATHETER ABLATION than with drug therapy at 1 year.56

Greater improvement in quality of life from baseline was MAINTAINED OVER 5 YEARS.56

* HR 0.11; 95% CI 0.02-0.48; p=0.0034
**As measured by the SF-36 described in Section 4C.

Abbreviations: AAD = antiarrhythmic drug; CAPTAF = Catheter Ablation compared with Pharmacological Therapy for Atrial Fibrillation; SF-36 = Short Form 36 questionnaire. Source: Blomstrom-Lundqvist et al. (2019)
Despite the initial investment, costs become favorable for catheter ablation at 5 years after the initial ablation procedure when compared to antiarrhythmic drugs.\(^{66}\)

A UK database analysis found that catheter ablation treatment was associated with reduced resource utilization compared to drugs over 1 year (excluding the 3 month blanking period).\(^{76}\)

Catheter ablation is cost effective compared to antiarrhythmic drugs for the long term treatment of patient with AF.

51% REDUCTION IN CARDIOVASCULAR-RELATED OUTPATIENT VISITS (\(p<0.001\))

38% REDUCTION IN INPATIENT ADMISSIONS FOR HEART FAILURE (\(p=0.0318\))

Despite the initial investment, costs become favorable for catheter ablation at 5 years after the initial ablation procedure when compared to antiarrhythmic drugs.\(^{66}\)

PROJECTING COSTS TO 10 YEARS AFTER ABLATION* catheter ablation was associated with a 35% SAVINGS IN COSTS COMPARED TO DRUG THERAPY\(^{66}\)

CUMULATIVE COSTS OF PAROXYSMAL AF TREATMENT OVER 10 YEARS

*Study performed in France; data were limited for other European countries.
Catheter ablation was associated with a 35% savings in costs compared to drug therapy.
Catheter ablation is more clinically effective and cost effective compared to drug therapy for the treatment of patients with AF.22, 37, 41-44

94% of patients are \textbf{FREE FROM ARRHYTHMIA RECURRENCE AT 1 YEAR}45-54

Patients with \textbf{paroxysmal AF} who undergo catheter ablation are \textbf{10 TIMES LESS LIKELY TO PROGRESS TO PERSISTENT AF} than those on AADs.*59

\textbf{CATHETER ABLATION} was also associated with \textbf{up to 46%} significant reductions in the probability of \textbf{AF-RELATED complications} compared to drug therapy over 7-years follow-up.74
The 2016 ESC/EACTS guidelines for the management of AF and the 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of AF highlight key areas of future research including the following:²,³

INTEGRATED HEALTHCARE MANAGEMENT TEAM
- Does a team approach lead to better outcomes for patients with AF than isolated pillars of care?
- What are the roles of each member of the heart team?

RHYTHM CONTROL OUTCOMES
- Does rhythm control therapy have a *prognostic benefit* in patients with AF?
- What are the outcomes of catheter ablation in *high risk patients*?
- What is the *clinical relevance of catheter ablation outcomes* and how do these outcomes relate to quality of life and stroke risk?
- What are the *characteristics of patients* who are most likely to benefit from catheter ablation?

RECURRANCE OF AF AFTER CATHETER ABLATION
- There is limited data on the *optimal treatment strategy* in patients who experience recurrence of AF after catheter ablation. Should patients receive a repeat catheter ablation, surgical ablation, AADs or hybrid therapy (ie, combining AADs with ablation)?

ORAL ANTICOAGULATION THERAPY
- It is unclear if a patient who has subclinical or no AF after successful catheter ablation needs oral anticoagulation. Are there patients who can *safely discontinue oral anticoagulation therapy*?

PROGRESS IN RHYTHM CONTROL THERAPY
- What is the *value of new technologies* for catheter ablation and new AADs in the treatment of patients with AF?

